自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

大坡3D软件开发

自主操作系统和CPU--用软件来改变世界

原创 从源码编译TensorFlow出错和解决

从源码下载,就一直不行,经常断流,搞 了几天才下载完成。出下面的错误:并且还是修改编译文件,才算过关了。比如把文件grpc-gitclone.cmake:execute_process(  COMMAND ${CMAKE_COMMAND} -E remove_directory "E:/...

2017-02-28 21:46:31 5084 0

原创 AI学习之路(12): 创建随机张量2

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)从正态分布截取一段创建随机张量。绝对值大于2的值将会删除。参数:shape: 一维整数张量或者Python数组,用来说明行...

2017-02-28 14:04:41 665 0

原创 TensorFlow加载模型时出错

当发现目录时出错如下:\windows\tensorflow\core\framework\op_kernel.cc:993] Not found: Unsuccessful TensorSliceReader constructor: Failed to find any matching fi...

2017-02-28 11:13:36 4032 0

原创 从源码编译TensorFlow

TF是开源的,因此也想看看它的实现代码,但是网络很不给力,经常出现如下这种情况,下载不了:出现这个问题,不知道有什么解决方法?代码下载和编译命令如下:C:\Users\tony>"C:\Program Files (x86)\Microsoft Visual Studio 14.0...

2017-02-27 15:22:32 1244 0

原创 AI学习之路(11): 创建随机张量1

由于在测试的过程中,经常要产生一些不同分布的随机数,比如初始化待定的变量。又或者一些训练数据。因此来学习一步随机数的产生。tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)从正态...

2017-02-27 11:38:14 1088 0

原创 AI学习之路(10): 张量的常量2

tf.fill(dims, value, name=None)创建一个张量填充指定的常数。参数:dims: 整数类型的列表对象,或者一维张量,表示行列形式。value: 填充的常量(0维张量) 返回值:填充指定的张量常量。 例子:#python 3.5.3 蔡军生 #http://edu.c...

2017-02-26 11:46:57 967 0

原创 AI学习之路(9): 张量的常量1

上一次我们学习了张量的变量,在这一次来学习一下张量的常量,因为很多时候需要使用张量常量来初始化变量,并且产生一些常量是固定的初始化值,这样可以减少变量的出错,同时也提供很好的测试数据,比如产生一个正态分布的数据,又或者产生初始化为0值,或者1值等等。 tf.zeros(shape, dtype=t...

2017-02-26 10:48:49 766 0

原创 NV显卡软件版本不一致运行TensorFlow出错

当使用NV显卡运行TensorFlow出错时,如下:failed s.ok() could not find cudnncreate in cudnn dso dlerror cudnn需要检查cudnn的版本与cuda的版本一致。否则就会出上面这个错误。我这里使用两个版本没有问题:cuda_8....

2017-02-25 14:45:12 2715 0

原创 SummaryWriter报错,改为tf.summary.FileWriter

不推荐使用SummaryWriter (来自tensorflow.Python.training.summary_io),将在2016-11-30之后删除。 更新说明: 请切换到tf.summary.FileWriter接口和行为是相同的; 这只是一个重命名。比如原来代码:with tf.Sess...

2017-02-24 22:39:23 15235 0

原创 AI学习之路(8): 定义张量变量

在前面,我们已经学习到生成训练数据,接着下来就要开始进行训练TF的神经网络了。但是我们从TensorFlow的名称就知道要使用张量来表示数据结构,并且让张量沿着不同的边进行流动,才可以产生神经元出来,也就是权重值。直接使用Python的数据结构可行吗?肯定不行,否则就不会创建张量这个单词出来了。因...

2017-02-24 17:39:51 2451 0

原创 AI学习之路(7): 生成训练数据

经过前面的准备,现在来到生成训练数据的新阶段,而在生成数据之前,先看看这段新闻,也可以说是旧闻了。2012年6月,《纽约时报》披露了Google Brain项目,吸引了公众的广泛关注。这个项目是由著名的斯坦福大学的机器学习教授Andrew Ng和在大规模计算机系统方面的世界顶尖专家Jeff Dea...

2017-02-24 10:59:21 2504 0

原创 AI学习之路(6): NumPy的使用

前面学习怎么样查看numpy的版本号,这才是刚刚开始,现在来开始更深入地学习一下它,否则以后会很麻烦的,更加看不懂那些例子的代码了。一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、...

2017-02-23 20:04:38 1893 0

原创 AI学习之路(5): NumPy是什么

在前面我们测试过一个例子,这个例子不知道你是否还记得它的内容,如果没有记得也没有关系,现在到我们去研究这个例子的时候了,它的前两行是这样写的:import tensorflow as tf  import numpy as np 如果你的python还是不懂,强烈建议先学习一下课程,这样会跟上我们...

2017-02-23 17:09:22 2707 0

原创 AI学习之路(4): TensorFlow是什么

在我们探索TensorFlow之前,先来聊一下金庸的小说,在它的小说《笑傲江湖》里,剑宗和气宗是华山派的两个派别,也就是说剑宗和气宗同属于华山派,剑宗认为在武学之中剑术最重要,而气宗则认为在武学之中气功最重要,在华山派的历史上这两派一直是争论不休,互相指责对方是邪说,而那种认为剑术和气功同样重要的...

2017-02-23 14:02:13 3068 0

原创 AI学习之路(3): 牛刀小试之线性回归

当阿法狗在围棋界展开大规模战斗之后,所有人都倒下了。可见人工智能的威力无限,正像《射雕英雄传》里的九阴真经,谁掌握了它,那么谁就是华山论剑里的第一人物了。我们也能学习人工智能吗?我们也能开发像阿法狗那样威力强劲的围棋吗?这些想法都是我们的梦想,有梦想就是好事情,马云说:万一实现了呢,王建林说:挣一...

2017-02-22 15:18:18 4069 0

原创 AI学习之路(2):GPU版本的Tensorflow在Windows上安装

1. 同样是下载3.5的python2. pip里安装的命令不一样:C:>pip install tensorflowC:>pip install tensorflow-gpu==1.0也可以从这里下载:https://pypi.python.org/pypi/tensorflow-g...

2017-02-22 14:20:33 2433 0

原创 AI学习之路(1):TensorFlow在Windows安装

1. 下载Python 3.5 64位版本https://www.python.org/downloads/windows/2. 安装PIP软件管理工具3. 从DOS窗口里运行PIP下载TensorFlow恭喜你,已经安装成功了。我们来测试一下:啊,出错了,这是什么情况,刚出师就不力。想想,怎么解...

2017-02-22 11:08:28 1527 0

原创 什么是光栅显示

光栅由大量等宽等间距的平行狭缝构成的光学器件称为光栅(grating)。一般常用的光栅是在玻璃片上刻出大量平行刻痕制成,刻痕为不透光部分,两刻痕之间的光滑部分可以透光,相当于一狭缝。精制的光栅,在1cm宽度内刻有几千条乃至上万条刻痕。这种利用透射光衍射的光栅称为透射光栅,还有利用两刻痕间的反射光衍...

2017-02-21 18:27:57 2202 0

原创 计算机输出设备

输出设备(Output Device)是计算机硬件系统的终端设备,用于接收计算机数据的输出显示、打印、声音、控制外围设备操作等。也是把各种计算结果数据或信息以数字、字符、图像、声音等形式表现出来。常见的输出设备有显示器、打印机、绘图仪、影像输出系统、语音输出系统、磁记录设备等。Definition...

2017-02-20 14:22:17 1106 0

原创 计算机图形学的主要研究内容是什么?

计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。 简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。图形通常由点、线、面、体等几何元素和灰度...

2017-02-19 16:12:55 5183 0

原创 计算机视觉,计算机图形学和数字图像处理

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工...

2017-02-19 15:46:00 2264 0

原创 mt19937是什么鬼?

今天看一个C++的例子,突然看到这个mt19937,起先还以为是什么地方搞错了,怎么会有这个怪的名称呢?这个名称是mt1937? 代表1937年?心里一开始有这个疑问。代码如下:std::random_device rd; std::mt19937 gen(rd()); std::unif...

2017-02-18 16:20:14 20282 0

原创 D3D中四元数的表示

1、定义。DIRECTX9文档中定义,令q为一四元数,theta为绕轴axis旋转的角度,则:q.x = sin(theta/2) * axis.xq.y = sin(theta/2) * axis.yq.z = sin(theta/2) * axis.zq.w = cos(theta/2)可以简...

2017-02-17 14:33:36 1425 0

原创 为什么要使用四元数

为 了回答这个问题,先来看看一般关于旋转(面向)的描述方法-欧拉描述法。它使用最简单的x,y,z值来分别表示在x,y,z轴上的旋转角度,其取值为 0-360(或者0-2pi),一般使用roll,pitch,yaw来表示这些分量的旋转值。需要注意的是,这里的旋转是针对世界坐标系说的,这意味着 第一次...

2017-02-17 11:36:07 2416 1

原创 欧拉角的万向节锁

Gimbal LockWhat's Gimbal Lock?Gimbal lock is the phenomenon of two rotational axis of an object pointing in the same direction. Actually, if two...

2017-02-16 18:07:14 910 0

原创 什么是欧拉角?

什么是欧拉角?用一句话说,欧拉角就是物体绕坐标系三个坐标轴(x,y,z轴)的旋转角度。在这里,坐标系可以是世界坐标系,也可以是物体坐标系,旋转顺序也是任意的,可以是xyz,xzy,yxz,zxy,yzx,zyx中的任何一种,甚至可以是xyx,xyy,xzz,zxz等等等等。。。。。。所以说欧拉角多...

2017-02-16 15:58:52 10396 0

原创 牛顿迭代公式

牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f...

2017-02-16 14:21:02 1607 0

原创 矩阵的特征值和特征向量

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于...

2017-02-14 11:07:37 1759 0

原创 点的变换和法向量的变换

在三维空间里,点的变换是通过仿射变换的,所以使用齐次坐标的变换矩阵来变换。不过,当一个点作矩阵M变换时,这个点的法向量是否也可以使用矩阵M来变换呢?答案是不行,只是在特殊的情况是可以,比如没有变形的变换。如果有变形的变换,就需要使用特殊矩阵:M矩阵的逆的转置矩阵。具体的推导过程,可以参考下面的文章...

2017-02-13 17:52:51 2433 0

原创 线性变换和仿射变换

1. 线性变换设v、w是两个线性空间.一个v至w的线性映射T,就称为v至w的线性变换.线性变换必须满足任意的x,y∈v 及任意实数a,b,有 T(ax+by)=aT(x)+bT(y)如恒等变换 I .v→v,对任意的x∈v,有 I(x)=x因为 I(ax+by)=ax+by= a I(x)+b I...

2017-02-13 15:59:59 3325 0

原创 矩阵的逆

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。E为n阶单位矩阵。求逆矩阵的方法:1. 高斯消元法2. 克莱姆法则克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方...

2017-02-13 15:31:58 1871 0

原创 矩阵的转置

设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)定义A的转置为这样一个n×m阶矩阵B,满足B=a(j,i),即 b (i,j)=a (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A'=B。(有些书记为AT=B,这里T为A的上标)直观...

2017-02-13 14:05:46 1928 0

原创 方形矩阵的行列式

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学...

2017-02-12 15:09:11 2119 0

原创 矩阵的乘法

小明今天要做饭,消耗2斤肉,1斤蔬菜。肉每斤20元,蔬菜每斤5元,则一共需多少花费?这个问题的答案很简单:<img src="https://pic1.zhimg.com/0443f0bc0fdafcdb8ae96a032b146a64_b.jpg" data-r...

2017-02-12 14:14:00 2070 0

原创 矩阵的定义

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1]  ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。[2]  在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计...

2017-02-09 13:47:21 1450 0

原创 为什么要使用矩阵

我们不妨回忆一下,矩阵是怎么产生的。矩阵可以看成是一个个向量的有序组合,这说明矩阵可以类比向量;但是向量又是怎么产生的?向量则是一个个数字的有序组合,这又把我们的研究方向指向了“数字是什么”这个问题上。比如,数字1是什么?它可以代表1米,可以代表1千克,也可以代表1分钟、1摄氏度甚至1个苹果。它为...

2017-02-09 13:34:36 3138 0

原创 正交基

规范正交基是n维欧式空间V中n个两两正交的非零单位向量组成的一个规范正交组。V中的任意向量ξ都可以由V的一组规范正交基{a1,a2,…,an}唯一表示ξ=x11+x22+…+xnn,x1,x2,…,xn是ξ关于基{a1,a2,…,an}的坐标,由于{a1,a2,…,an}是规范正交基,在欧式空间中...

2017-02-06 16:03:45 4453 0

原创 点法式方程

平面方程的三种表示法:点法式、一般式、截距式主要使用点法式方程:1. C++标准模板库从入门到精通 http://edu.csdn.net/course/detail/33242.跟老菜鸟学C++http://edu.csdn.net/course/detail/29013. 跟老菜鸟学pytho...

2017-02-06 15:47:41 2152 0

原创 点到平面的距离

空间内一点到平面内一点的最小长度叫做点到平面的距离。特别的,当点在平面内,则点到平面的距离为0。平面的一般式方程Ax +By +Cz + D = 0其中n = (A, B, C)是平面的法向量,D是将平面平移到坐标原点所需距离(所以D=0时,平面过原点)向量的模(长度)给定一个向量V(x, y, ...

2017-02-06 14:56:29 2324 0

原创 点积的应用

点积有两个特性,一个是可以计算长度,一个是可以计算夹角。利用这两个特性就可以用来解决仿射空间里的一些问题,比如计算圆点P(a, b, 1),半径为r的圆:根据计算长度的公式,就要写出:(x - a)^2 + (y - b)^2 = r^2比如三维仿射空间里有一点P(1, 2, 3, 1), 向量v...

2017-02-06 14:37:36 665 0

提示
确定要删除当前文章?
取消 删除