学习算法笔记(8)

算法笔记 专栏收录该内容
79 篇文章 328 订阅 ¥99.00 ¥19.90

前面通过归并排序和寻找最大和子数组学习了分治策略,用这个方法设计出来的算法效率都有提升的空间,接着下来继续采用这个分治方法来对矩阵乘法进行设计,前面是数组,是一维的空间,而现在进行二维空间—矩阵。矩阵的作用是非常大的,无论现在火热的AI,还是制造业。

矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义  。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。如下图:

根据这个定义来对一个方阵进行乘法运算,所谓的方阵就是行数与列数相等。可以采用下面算法来实现:

#学习算法笔记-蔡军生(qq:9073204)
#https://mysoft.blog.csdn.net/
#矩阵乘法
#2020-9-25

def square_matrix_multiply(A,B):
    n = len(A)
    C = [[0 for col in range(n)] for row in range(n)]
    for i in 
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值