在OpenCV里使用对极几何

本文将要学习多视角几何的基础知识,极点、极线和对极约束等等。当我们使用一个针孔照相机来拍照照片时,会丢失很多重要的信息,比如物体的深度信息。或者说图像里每个点离相机多远,没有记录下来,因为这是一个从3D到2D的转换过程。那么我们怎么样才可以通过相机来保留深度信息呢?这是需要使用两台以上相机,就跟我们的眼睛工作原理一样,因为眼睛有两个,这样的方式叫做立体视觉。下面来学习一下OpenCV提供了什么样的功能。在理解多视角构造深度图像之前,先来学习一下对极几何的基本概念。下图就是最基本两个相机组成的深度相机:

 

如果我们只使用左边的相机,就会发现3D空间里OX的点全部投影在x点上,如果考虑使用右边的相机,就会发现OX轴上的点在右边相机里并不会投影成一点,而是投影为不同的x点,所以两个相机就可以把这些点通过三角化来分离出来。上图里OX投影到右平面里的线(l′),就叫做极线(epiline ),意味着要找x点在右图里什么位置,就是沿着这条极线进行寻找。同样的道理,如果想在另外一张图片里搜索相同的线的投影,也是在极线里寻找,而不需要搜索整个图片,这样就可以提高速度和性能,这也叫做极约束(Epipolar Constraint)。XOO′组成的平面就叫极平面(Epipolar Plane)。O和O′叫做相机中心,O和O′的连线叫做基线,而基线与两个图像平面相校的点e、e′叫做极点(epipole)。在某些情况之下,或许在图像上找不到极点,因为极点在图

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览

应支付9.90元
点击重新获取
扫码支付

支付成功即可阅读