在OpenCV里使用SIFT

目标:学习SIFT的算法和SIFT关键点、及特征。

 

理论:

在前面我们学习图像特征检测--角点检测,比如Harris角检测。不过,前面学习的角点检测,只是具有旋转不变性,比如图片进行旋转了,还可以从图像里找到相应的角点。因为图像进行旋转了,角的朝向也跟着旋转,所以没有改角的组成。如果把角进行放大,是否还具有不变性呢?下面就来讨论一下这个问题,其实把图像里的角进行放大之后,角点有可能就不是一个角了。举一个例子来说明,如下图:

在上图里,当把左边的小图进行放大,然后还用相同的窗口大小去滑动检测角时,发现在小窗口里已经不是一个角了。因此,Harris角检测不具有放大不变的特征。

所以在2004年,D.Lowe提出一个新的算法Scale Invariant Feature Transform (SIFT),这个算法在论文《Distinctive Image Features from Scale-Invariant Keypoints》里发表。这个算法主要有以下四步:

  1. 尺度空间极值检测( Scale-space Extrema Detection)

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览

应支付9.90元
点击重新获取
扫码支付

支付成功即可阅读