在OpenCV里Harris角检测

前面学习了很多关于图像的内容,以及变换,那么你有没有问过自己这样一个问题,什么才是图像的特征?如果我们把一个图像进行分割成一小块一小块的,然后打乱之后再想拼到一起,会寻找什么的规律呢?一般情况之下是找对应的条纹,边缘线等,其实最容易确定一般是有十字交叉的线条,因为这样交叉线条组成了角,而角的两条边具有稳定性,它不能随便旋转,如果旋转了就与别的对应不上了。因此在一幅图像里,最具有代表性的特征就是角。

我们怎样找到角?或者说我们怎样找到角点?我们也已经用一种直观的方式做了回答,比如在图像中找一些区域,无论你想那个方向移动这些区域变化都很大。我们会用计算机语言来实现这个想法,所以找到图像特征的过程被称为特征检测(Feature Detection)。我们找到图像的一些特征,然后我们可以在其他图片中找到类似的特征,这是怎样实现的呢?我们获取特征区域,用我们的语言描述它们,比如“图的上方是天空,下面有一幢大楼,大楼上有好多玻璃”,然后我们可以在其他图片中寻找相似特征的区域。上面我们对图像的特征进行了描述,类似的,计算机也可以描述一些特征然后去其他图片上找相似的地方。这样一个描述被称作 特征描述Feature Description)。一旦你有一种特征并有它的描述,你就可以在其他图片中找出相似甚至相同的部分。(更多特征参考:https://www.jianshu.com/p/2cdf0eeeeef3

 

在1988年,Chris Harris & Mike Stephens发表了一篇论文《A Combined Corner and Edge Detector》,论文描述怎么样找角的原理,现在叫做Harris角检测

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览

应支付9.90元
点击重新获取
扫码支付

支付成功即可阅读