在OpenCV里实现模板匹配

目标:使用模板匹配方法在图片里寻找目标对象,学会使用cv.matchTemplate(), cv.minMaxLoc()函数

 

模板匹配算法是从一个大图像里找到感兴趣的目标对象,OpenCV提供函数cv.matchTemplate()来实现相关的功能。模板匹配的原理其实很简单,就是不断地在原图中移动模板图像去比较,有6种不同的比较方法:

平方差匹配CV_TM_SQDIFF:用两者的平方差来匹配,最好的匹配值为0

归一化平方差匹配CV_TM_SQDIFF_NORMED

相关匹配CV_TM_CCORR:用两者的乘积匹配,数值越大表明匹配程度越好

归一化相关匹配CV_TM_CCORR_NORMED

相关系数匹配CV_TM_CCOEFF:用两者的相关系数匹配,1表示完美的匹配,-1表示最差的匹配

归一化相关系数匹配CV_TM_CCOEFF_NORMED

这些方法的对比代码可到源码处查看。模板匹配也是应用卷积来实现的:假设原图大小为W×H,模板图大小为w×h,那么生成图大小是(W-w+1)×(H-h+1),生成图中的每个像素值表示原图与模板的匹配程度。

 

由于这个模板匹配是一种最原始、最基本的模式识别方法

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览

应支付9.90元
点击重新获取
扫码支付

支付成功即可阅读