在OpenCV里为什么拉普拉斯变换是高通滤波

大家学习了拉普拉斯变换之后,老是喜欢问为什么拉普拉斯变换是高通滤波(HPF)? 在这里通过傅里叶变换来研究一下这些卷积核的本质,就可以清楚地了解它们到底是什么样类型的滤波。下面来把所有卷积核构造出来,然后每个都进行傅里叶变换,再查看它们的频谱图。

例子如下:

#python 3.7.4,opencv4.1
#蔡军生 https://blog.csdn.net/caimouse/article/details/51749579
#
import numpy as np
import cv2
from matplotlib import pyplot as plt

#均值平滑,没有除平均系数
mean_filter = np.ones((3,3))

#高斯核
x = cv2.getGaussianKernel(5,10)
gaussian = x*x.T

#边缘检测
# scharr X方向
scharr = np.array([[-3, 0, 3],
                   [-10,0,10],
                   [-3, 0, 3]])
# sobel X方向
sobel_x= np.array([[-1, 0, 1],
                   [-2, 0, 2],
                   [-1, 0, 1]])
# sobel Y方向
sobel_y= np.array([[-1,-2,-1],
                   [0, 0, 0],
                   [1, 2, 1]])
# laplacian
laplacian=np.array([[0, 1, 0],
                    [1,-4, 1],
                    [0, 1, 0]])

filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
f

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览

应支付9.90元
点击重新获取
扫码支付

支付成功即可阅读