在OpenCV里计算轮廓的特征

目标:

1)通过轮廓找出不同的特征,比如面积、周长、质心点、边缘包装盒

2)学习使用轮廓函数

 

图像矩(Image moments )

图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(数据描述量)来描述整个图像,这组数据月简单越有代表性越好。良好的特征不受光线、噪点、几何形变的干扰,图像识别技术的发展中,不断有新的描述图像特征提出,而图像不变矩就是其中一个。

从图像中计算出来的矩通常描述了图像不同种类的几何特征如:大小、灰度、方向、形状等,图像矩广泛应用于模式识别、目标分类、目标识别与防伪估计、图像编码与重构等领域。

图像矩主要用来计算出来图像的特征,比如质心、对象面积等等。在OpenCV里提供 cv.moments()函数,这个函数以字典的方式返回所有计算好的

特征值,比如下面例子:

import numpy as np

import cv2 as cv

 

img = cv.imread('star.jpg',0)

ret,thresh = cv.threshold(img,127,255,0)

contours,hierarchy = cv.

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览

应支付9.90元
点击重新获取
扫码支付

支付成功即可阅读